

Università degli Studi di Ferrara

Dipartimento di Fisica e Scienze della Terra

18-22 May 2015

home.fnal.gov/~stancari/apufe15

An overview

Questions driving current research

- What can we learn about nature from experiments at accelerators?
- Can we understand and control the behavior of intense chargedparticle beams?
- Are there new ways to design accelerators?
- What technologies will improve performance and reduce cost?

Main applications of accelerators

Nuclear and particle physics

- synchrotrons, linacs, storage rings, colliders, ...

Biology and material science

- synchrotron radiation, neutrons, free electron lasers, ...

Medicine

- radiation treatment, hadron therapy, diagnostic isotope production, ...

Manufacturing processes

The field of Accelerator Physics: a concept map

What do accelerator researchers talk about? A word cloud

Text from 1381 abstracts submitted to the 6th International Particle Accelerator Conference, Richmond, VA, USA, May 2015, <www.ipac15.org>

Resources

- Textbooks
- Schools
- Internships
- Journals
- Conferences

More information and links on course web site:

<home.fnal.gov/~stancari/apufe15>

The Fermilab accelerator complex

Where is Fermilab?

Fermilab accelerator complex

Fermilab Accelerator Complex

Ion source, radio-frequency quadrupole, beam transport

H⁻ sources 35 keV to 750 keV 65 mA

RFQ focuses and accelerates quickly to avoid space-charge blowup

Serves Booster, Neutron Therapy Facility, and Muon Test Area

Booster

Stripping injection (H- to protons)

Combined-function magnets (steering and focusing)

Rapid-cycling synchrotron (15 Hz)

468 m circumference

400 MeV to 8 GeV

Delivers beam to Main Injector and to 8-GeV neutrino target

Recycler

Permanent magnets
Fixed 8-GeV energy
3.3 km circumference

Accumulates protons during Main Injector ramp

Main Injector

Ramping synchrotron (1.3 s)

- 8 GeV to 120 GeV
- 3.3 km circumference

Fast extraction to neutrino target (450 kW record so far) Slow resonant extraction to fixed-target experiments

Target stations

Lithium lens was used for antiproton production

NuMI horn

Challenges: energy deposition, kW to MW activation

Muon Delivery Ring

Storage ring
474 m circumference

Will be used to separate muons from other particles in a few turns

The Fermilab accelerator complex in more detail

http://www-bdnew.fnal.gov/operations/rookie_books/rbooks.html

Neutrino beam lines

21

Muon g-2 experiment

muon-g-2.fnal.gov

Muon-to-electron conversion experiment

mu2e.fnal.gov

Limitations and challenges

- Study of neutrinos and rare decays requires intense primary beams
 - particle losses and activation must be minimized
 - energy deposition can damage components
 - beam instabilities limit maximum intensity

Accelerator technologies at Fermilab

Accelerator technologies at Fermilab

Superconducting radiofrequency cavities

Superconducting magnets

Power targets

Scientific computing

Beam physics research

Beam physics research facility

ASTA photoinjector

High-energy beam lines and IOTA (under construction)

Main research areas

- In general, what kinds of dynamical systems are stable and robust against perturbations?
- Can intrinsically nonlinear accelerators be designed, built, and operated?
- Will nonlinear integrable lattices allow accelerators to exceed their present intensity limitations?
- Do we understand the dynamics of intense charged-particle beams under the influence of self fields?
- What kinds of radiation are generated by short electron pulses?
 What are their applications?

Longitudinal dynamics in rf fields

Nonlinear dynamics in accelerators

Space-charge fields and electron-beam lenses

What's an electron lens?

- Pulsed, magnetically confined, low-energy electron beam
- Circulating beam affected by electromagnetic fields generated by electrons
- Current-density profile shaped by cathode and electrode geometry
- Stability provided by strong axial magnetic fields

For IOTA, we plan to use a resistive solenoid in the overlap region

Shiltsev et al., Phys. Rev. ST Accel. Beams 11, 103501 (2008)

Applications of electron lenses

In the Fermilab Tevatron collider

- ► long-range beam-beam compensation (tune shift of individual bunches)
 - ►Shiltsev et al., Phys. Rev. Lett. **99**, 244801 (2007)
- ► abort-gap cleaning (for years of regular operations)
 - ▶Zhang et al., Phys. Rev. ST Accel. Beams **11**, 051002 (2008)
- ► studies of head-on beam-beam compensation
 - Stancari and Valishev, FERMILAB-CONF-13-046-APC
- ► demonstration of halo scraping with hollow electron beams
 - Stancari et al., Phys. Rev. Lett. **107**, 084802 (2011)

Presently, used in RHIC at BNL for head-on beam-beam compensation, luminosity improvements

▶G. Robert-Demolaize, X. Gu, IPAC15

Current areas of research

- ► generation of nonlinear integrable lattices in the Fermilab Integrable Optics Test Accelerator
- ► hollow electron beam scraping of protons in LHC
 - ► R. Bruce, IPAC15
- ► long-range beam-beam compensation as charged, current-carrying "wires" for LHC
 - ► A. Valishev, IPAC15
- ▶ to generate tune spread for Landau damping of instabilities before collisions in LHC

Tevatron electron lenses

2 km

The Fermilab electron-lens test stand

